IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5577486.html
   My bibliography  Save this article

Using Machine Learning Algorithm to Describe the Connection between the Types and Characteristics of Music Signal

Author

Listed:
  • Bo Sun
  • Wei Wang

Abstract

Music classification is conducive to online music retrieval, but the current music classification model finds it difficult to accurately identify various types of music, which makes the classification effect of the current music classification model poor. In order to improve the accuracy of music classification, a music classification model based on multifeature fusion and machine learning algorithm is proposed. First, we obtain the music signal, and then extract various features from the classification of the music signal, and use machine learning algorithms to describe the type of music signal and the relationship between the features. The music classifier and deep belief network machine learning models in shallow logistic regression are established, respectively. Experiments were designed for these two models to verify the applicability of the model for music classification. By comparing the experimental results, it is found that the classification accuracy of the deep confidence network model is higher than that of the logistic regression model, but the number of iterations needed for its accuracy to converge is also higher than that of the logistic regression model. Compared with other current music classification models, this model reduces the time of constructing music classifier, speeds up the speed of music classification, and can identify various types of music with high precision. The accuracy of music classification is obviously improved, which verifies the superiority of this music classification model.

Suggested Citation

  • Bo Sun & Wei Wang, 2021. "Using Machine Learning Algorithm to Describe the Connection between the Types and Characteristics of Music Signal," Complexity, Hindawi, vol. 2021, pages 1-10, March.
  • Handle: RePEc:hin:complx:5577486
    DOI: 10.1155/2021/5577486
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5577486.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5577486.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5577486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5577486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.