IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5575883.html
   My bibliography  Save this article

Image Recognition and Simulation Based on Distributed Artificial Intelligence

Author

Listed:
  • Tao Fan
  • Zhihan Lv

Abstract

This paper studies the traditional target classification and recognition algorithm based on Histogram of Oriented Gradients (HOG) feature extraction and Support Vector Machine (SVM) classification and applies this algorithm to distributed artificial intelligence image recognition. Due to the huge number of images, the general detection speed cannot meet the requirements. We have improved the HOG feature extraction algorithm. Using principal component analysis (PCA) to perform dimensionality reduction operations on HOG features and doing distributed artificial intelligence image recognition experiments, the results show that the image detection efficiency is slightly improved, and the detection speed is also improved. This article analyzes the reason for these changes because PCA mainly uses the useful feature information in HOG features. The parallelization processing of HOG features on graphics processing unit (GPU) is studied. GPU is used for high parallel and high-density calculations, and the calculation of HOG features is very complicated. Using GPU for parallelization of HOG features can make the calculation speed of HOG features improved. We use image experiments for the parallelized HOG feature algorithm. Experimental simulations show that the speed of distributed artificial intelligence image recognition is greatly improved. By analyzing the existing digital image recognition methods, an improved BP neural network algorithm is proposed. Under the premise of ensuring accuracy, the recognition speed of digital images is accelerated, the time required for recognition is reduced, real-time performance is guaranteed, and the effectiveness of the algorithm is verified.

Suggested Citation

  • Tao Fan & Zhihan Lv, 2021. "Image Recognition and Simulation Based on Distributed Artificial Intelligence," Complexity, Hindawi, vol. 2021, pages 1-11, April.
  • Handle: RePEc:hin:complx:5575883
    DOI: 10.1155/2021/5575883
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5575883.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5575883.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5575883?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5575883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.