Author
Listed:
- Madallah Alruwaili
- M. Irfan Uddin
Abstract
Blood is a vital body fluid and can be instrumental in identifying various pathological conditions. Nowadays, a lot of people are suffering from COVID-19 and every country has its own limited testing capacity. Consequently, a system is required to help doctors analyze a patient’s blood structure including COVID-19. Therefore, in this paper, we extracted and selected blood features by proposing a new feature extraction and selection method named stepwise linear discriminant analysis (SWLDA). SWLDA emphasizes on picking confined features from blood structure images and discerning its class based on reversion value such as partial F value. SWLDA begins with picking an equivalence comprising the sole finest X variable and then puts in effort to add more Xs individually, providing the situations are adequate. The process of adding and picking is based on F value to determine which variable would be entered. Then, the picked or the default F-to-enter value is compared with the uppermost partial F value. After this step, the forward addition or backward removal begins and whether the partial test values for all the predictor variables already in the line are estimated is known. Then, the comparison is made between the lowermost partial test value (FL) and preselected or defaulting consequence levels such as F0 (i.e., if F0 > FL, the variable ZL is removed, and the F test is started again; otherwise, the regression equation is adopted). Finally, the system is trained by employing support vector machine (SVM) to label the blood images. The performance of the proposed approach is assessed by employing 8 different datasets of blood structures. It is assured that the proposed method has achieved significant results under different blood structure images including COVID-19.
Suggested Citation
Madallah Alruwaili & M. Irfan Uddin, 2021.
"An Intelligent Medical Imaging Approach for Various Blood Structure Classifications,"
Complexity, Hindawi, vol. 2021, pages 1-10, May.
Handle:
RePEc:hin:complx:5573300
DOI: 10.1155/2021/5573300
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5573300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.