Author
Listed:
- Guanghui Song
- Hai Wang
- Wei Wang
Abstract
In this article, we study the mural restoration work based on artificial intelligence-assisted multiscale trace generation. Firstly, we convert the fresco images to colour space to obtain the luminance and chromaticity component images; then we process each component image to enhance the edges of the exfoliated region using high and low hat operations; then we construct a multistructure morphological filter to smooth the noise of the image. Finally, the fused mask image is fused with the original mural to obtain the final calibration result. The fresco is converted to HSV colour space, and chromaticity, saturation, and luminance features are introduced; then the confidence term and data term are used to determine the priority of shedding boundary points; then a new block matching criterion is defined, and the best matching block is obtained to replace the block to be repaired based on the structural similarity between the block to be repaired and the matching block by global search; finally, the restoration result is converted to RGB colour space to obtain the final restoration result. An improved generative adversarial network structure is proposed to address the shortcomings of the existing network structure in mural defect restoration, and the effectiveness of the improved modules of the network is verified. Compared with the existing mural restoration algorithms on the test data experimentally verified, the peak signal-to-noise ratio (PSNR) score is improved by 4% and the structural similarity (SSIM) score is improved by 2%.
Suggested Citation
Guanghui Song & Hai Wang & Wei Wang, 2021.
"Artificial Intelligence-Assisted Fresco Restoration with Multiscale Line Drawing Generation,"
Complexity, Hindawi, vol. 2021, pages 1-12, March.
Handle:
RePEc:hin:complx:5567966
DOI: 10.1155/2021/5567966
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5567966. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.