Author
Abstract
At the level of English resource vocabulary, due to the lack of vocabulary alignment structure, the translation of neural machine translation has the problem of unfaithfulness. This paper proposes a framework that integrates vocabulary alignment structure for neural machine translation at the vocabulary level. Under the proposed framework, the neural machine translation decoder receives external vocabulary alignment information during each step of the decoding process to further alleviate the problem of missing vocabulary alignment structure. Specifically, this article uses the word alignment structure of statistical machine translation as the external vocabulary alignment information and introduces it into the decoding step of neural machine translation. The model is mainly based on neural machine translation, and the statistical machine translation vocabulary alignment structure is integrated on the basis of neural networks and continuous expression of words. In the model decoding stage, the statistical machine translation system provides appropriate vocabulary alignment information based on the decoding information of the neural machine translation and recommends vocabulary based on the vocabulary alignment information to guide the neural machine translation decoder to more accurately estimate its vocabulary in the target language. From the aspects of data processing methods and machine translation technology, experiments are carried out to compare the data processing methods based on language model and sentence similarity and the effectiveness of machine translation models based on fusion principles. Comparative experiment results show that the data processing method based on language model and sentence similarity effectively guarantees data quality and indirectly improves the algorithm performance of machine translation model; the translation effect of neural machine translation model integrated with statistical machine translation vocabulary alignment structure is compared with other models.
Suggested Citation
Yanping Ye & Wei Wang, 2021.
"Translation Mechanism of Neural Machine Algorithm for Online English Resources,"
Complexity, Hindawi, vol. 2021, pages 1-11, April.
Handle:
RePEc:hin:complx:5564705
DOI: 10.1155/2021/5564705
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5564705. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.