Author
Abstract
In this paper, the most common pepper noise in grayscale image noise is investigated in depth in the median filtering algorithm, and the improved median filtering algorithm, adaptive switching median filtering algorithm, and adaptive polar median filtering algorithm are applied to the OTSU algorithm. Two improved OTSU algorithms such as the adaptive switched median filter-based OTSU algorithm and the polar adaptive median filter-based OTSU algorithm are obtained. The experimental results show that the algorithm can better cope with grayscale images contaminated by pretzel noise, and the segmented grayscale images are not only clear but also can better retain the detailed features of grayscale images. A genetic algorithm is a kind of search algorithm with high adaptive, fast operation speed, and good global space finding ability, and it will have a good effect when applied to the threshold finding of the OTSU algorithm. However, the traditional genetic algorithm will fall into the local optimal solution in different degrees when finding the optimal threshold. The advantages of the two interpolation methods proposed in this paper are that one is the edge grayscale image interpolation algorithm using OTSU threshold adaptive segmentation and the other is the edge grayscale image interpolation algorithm using local adaptive threshold segmentation, which can accurately divide the grayscale image region according to the characteristics of different grayscale images and effectively improve the loss of grayscale image edge detail information and jagged blur caused by the classical interpolation algorithm. The visual effect of grayscale images is enhanced by selecting grayscale images from the standard grayscale image test set and interpolating them with bilinear interpolation, bucolic interpolation, NEDI interpolation, and FEOI interpolation for interpolation simulation validation. The subjective evaluation and objective evaluation, as well as the running time, are compared, respectively, showing that the method of this paper can effectively improve the quality of grayscale image interpolation.
Suggested Citation
Ruishuai Chai & Wei Wang, 2021.
"Otsu’s Image Segmentation Algorithm with Memory-Based Fruit Fly Optimization Algorithm,"
Complexity, Hindawi, vol. 2021, pages 1-11, March.
Handle:
RePEc:hin:complx:5564690
DOI: 10.1155/2021/5564690
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5564690. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.