IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5564361.html
   My bibliography  Save this article

Ink Art Three-Dimensional Big Data Three-Dimensional Display Index Prediction Model

Author

Listed:
  • Xiaonan Cao
  • Wei Wang

Abstract

This paper starts with the study of realistic three-dimensional models, from the two aspects of ink art style simulation model and three-dimensional display technology, explores the three-dimensional display model of three-dimensional model ink style, and conducts experiments through the software development platform and auxiliary software. The feasibility of the model is verified. Aiming at the problem of real-time rendering of large-scale 3D scenes in the model, efficient visibility rejection method and a multiresolution fast rendering method were designed to realize the rapid construction and rendering of ink art 3D virtual reality scenes in a big data environment. A two-dimensional cellular automaton is used to simulate a brushstroke model with ink and wash style, and outlines are drawn along the path of the brushstroke to obtain an effect close to the artistic style of ink and wash painting. Set the surface of the model with ink style brushstroke texture patterns, refer to the depth map, normal map, and curvature map information of the model, and simulate the drawing effect of the method by procedural texture mapping. Example verification shows that the rapid visualization analysis model of ink art big data designed in this paper is in line with the prediction requirements of ink art big data three-dimensional display indicators. The fast visibility removal method is used to deal with large-scale three-dimensional ink art in a big data environment. High efficiency is achieved in virtual reality scenes, and the multiresolution fast rendering method better maintains the appearance of the prediction model without major deformation.

Suggested Citation

  • Xiaonan Cao & Wei Wang, 2021. "Ink Art Three-Dimensional Big Data Three-Dimensional Display Index Prediction Model," Complexity, Hindawi, vol. 2021, pages 1-10, April.
  • Handle: RePEc:hin:complx:5564361
    DOI: 10.1155/2021/5564361
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5564361.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5564361.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5564361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5564361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.