IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5539284.html
   My bibliography  Save this article

Optimal Economic Modelling of Hybrid Combined Cooling, Heating, and Energy Storage System Based on Gravitational Search Algorithm-Random Forest Regression

Author

Listed:
  • Muhammad Shahzad Nazir
  • Sami ud Din
  • Wahab Ali Shah
  • Majid Ali
  • Ali Yousaf Kharal
  • Ahmad N. Abdalla
  • Padmanaban Sanjeevikumar
  • Dr Shahzad Sarfraz

Abstract

The hybridization of two or more energy sources into a single power station is one of the widely discussed solutions to address the demand and supply havoc generated by renewable production (wind-solar/photovoltaic (PV), heating power, and cooling power) and its energy storage issues. Hybrid energy sources work based on the complementary existence of renewable sources. The combined cooling, heating, and power (CCHP) is one of the significant systems and shows a profit from its low environmental impact, high energy efficiency, low economic investment, and sustainability in the industry. This paper presents an economic model of a microgrid (MG) system containing the CCHP system and energy storage considering the energy coupling and conversion characteristics, the effective characteristics of each microsource, and energy storage unit is proposed. The random forest regression (RFR) model was optimized by the gravitational search algorithm (GSA). The test results show that the GSA-RFR model improves prediction accuracy and reduces the generalization error. The detail of the MG network and the energy storage architecture connected to the other renewable energy sources is discussed. The mathematical formulation of energy coupling and energy flow of the MG network including wind turbines, photovoltaic (PV), CCHP system, fuel cell, and energy storage devices (batteries, cold storage, hot water tanks, and so on) are presented. The testing system has been analysed under load peak cutting and valley filling of energy utilization index, energy utilization rate, the heat pump, the natural gas consumption of the microgas turbine, and the energy storage unit. The energy efficiency costs were observed as 88.2% and 86.9% with heat pump and energy storage operation comparing with GSA-RFR-based operation costs as 93.2% and 93% in summer and winter season, respectively. The simulation results extended the rationality and economy of the proposed model.

Suggested Citation

  • Muhammad Shahzad Nazir & Sami ud Din & Wahab Ali Shah & Majid Ali & Ali Yousaf Kharal & Ahmad N. Abdalla & Padmanaban Sanjeevikumar & Dr Shahzad Sarfraz, 2021. "Optimal Economic Modelling of Hybrid Combined Cooling, Heating, and Energy Storage System Based on Gravitational Search Algorithm-Random Forest Regression," Complexity, Hindawi, vol. 2021, pages 1-13, May.
  • Handle: RePEc:hin:complx:5539284
    DOI: 10.1155/2021/5539284
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5539284.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5539284.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5539284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed N. Abdalla & Yongfeng Ju & Muhammad Shahzad Nazir & Hai Tao, 2022. "A Robust Economic Framework for Integrated Energy Systems Based on Hybrid Shuffled Frog-Leaping and Local Search Algorithm," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    2. Dai, Yiru & Zeng, Yipu, 2022. "Optimization of CCHP integrated with multiple load, replenished energy, and hybrid storage in different operation modes," Energy, Elsevier, vol. 260(C).
    3. Muhammad Shahzad Nazir & Ahmed N. Abdalla & Ahmed Sayed M. Metwally & Muhammad Imran & Patrizia Bocchetta & Muhammad Sufyan Javed, 2022. "Cryogenic-Energy-Storage-Based Optimized Green Growth of an Integrated and Sustainable Energy System," Sustainability, MDPI, vol. 14(9), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5539284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.