Author
Listed:
- Qianyu Cao
- Hanmei Hao
- Wei Wang
Abstract
Oral English, as a language tool, is not only an important part of English learning but also an essential part. For nonnative English learners, effective and meaningful voice feedback is very important. At present, most of the traditional recognition and error correction systems for oral English training are still in the theoretical stage. At the same time, the corresponding high-end experimental prototype also has the disadvantages of large and complex system. In the speech recognition technology, the traditional speech recognition technology is not perfect in recognition ability and recognition accuracy, and it relies too much on the recognition of speech content, which is easily affected by the noise environment. Based on this, this paper will develop and design a spoken English assistant pronunciation training system based on Android smartphone platform. Based on the in-depth study and analysis of spoken English speech correction algorithm and speech feedback mechanism, this paper proposes a lip motion judgment algorithm based on ultrasonic detection, which is used to assist the traditional speech recognition algorithm in double feedback judgment. In the feedback mechanism of intelligent speech training, a double benchmark scoring mechanism is introduced to comprehensively evaluate the speech of the speech trainer and correct the speaker’s speech in time. The experimental results show that the speech accuracy of the system reaches 85%, which improves the level of oral English trainers to a certain extent.
Suggested Citation
Qianyu Cao & Hanmei Hao & Wei Wang, 2021.
"Optimization of Intelligent English Pronunciation Training System Based on Android Platform,"
Complexity, Hindawi, vol. 2021, pages 1-11, March.
Handle:
RePEc:hin:complx:5537101
DOI: 10.1155/2021/5537101
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5537101. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.