Author
Listed:
- Lina Yang
- Wei Liu
- Wei Wang
Abstract
In this paper, we analyze the intelligent subdesign of the simulated marking system through an in-depth study of it. This paper proposes a correlation analysis-based quantification of N-element sense values and a rationality enhancement-based scoring fitting algorithm for English essays. This paper also extracts word features, sentence features, and chapter structure features in essays to fit English composition scores. Since not all students can complete the essays according to the topic requirements, a triage scoring model is used to separate the normal essays from the low-scoring essays. Statistically, it was found that the essay scores also showed a certain normal distribution. The standard support vector regression algorithm is prone to data skewing problems, so this paper addresses this problem by using a rationality enhancement method that gives a corresponding penalty factor according to the distribution of the dataset. The results show that the English essay scoring fitting algorithm proposed in this paper can well improve the prediction accuracy of some data and solve the problem of skewed data where the scores show a normal distribution. This paper designs and implements an online mock examination system that incorporates an intelligent scoring system for essays, enabling it to meet the needs of teachers and students for online examinations and intelligent scoring.
Suggested Citation
Lina Yang & Wei Liu & Wei Wang, 2021.
"Design of English Intelligent Simulated Paper Marking System,"
Complexity, Hindawi, vol. 2021, pages 1-10, April.
Handle:
RePEc:hin:complx:5529114
DOI: 10.1155/2021/5529114
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5529114. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.