IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5528383.html
   My bibliography  Save this article

Tourism Demand Forecasting Based on Grey Model and BP Neural Network

Author

Listed:
  • Xing Ma
  • Zhihan Lv

Abstract

This article aims to explore a more suitable prediction method for tourism complex environment, to improve the accuracy of tourism prediction results and to explore the development law of China’s domestic tourism so as to better serve the domestic tourism management and tourism decision-making. This study uses grey system theory, BP neural network theory, and the combination model method to model and forecast tourism demand. Firstly, the GM (1, 1) model is established based on the introduction of grey theory. The regular data series are obtained through the transformation of irregular data series, and the prediction model is established. Secondly, in the structure algorithm of the BP neural network, the BP neural network model is established using the data series of travel time and the number of people. Then, combining BP neural network with the grey model, the grey neural network combination model is established to forecast the number of tourists. The prediction accuracy of the model is analyzed by the actual time series data of the number of tourists. Finally, the experimental analysis shows that the combination forecasting makes full use of the information provided by each forecasting model and obtains the combination forecasting model and the best forecasting result so as to improve the forecasting accuracy and reliability.

Suggested Citation

  • Xing Ma & Zhihan Lv, 2021. "Tourism Demand Forecasting Based on Grey Model and BP Neural Network," Complexity, Hindawi, vol. 2021, pages 1-13, May.
  • Handle: RePEc:hin:complx:5528383
    DOI: 10.1155/2021/5528383
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5528383.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5528383.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5528383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuruixian Zhang & Wei Chong Choo & Yuhanis Abdul Aziz & Choy Leong Yee & Jen Sim Ho, 2022. "Go Wild for a While? A Bibliometric Analysis of Two Themes in Tourism Demand Forecasting from 1980 to 2021: Current Status and Development," Data, MDPI, vol. 7(8), pages 1-38, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5528383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.