IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5527076.html
   My bibliography  Save this article

Feature Extraction of Broken Glass Cracks in Road Traffic Accident Site Based on Deep Learning

Author

Listed:
  • Shuai Liang
  • Wei Wang

Abstract

This paper studies the feature extraction and middle-level expression of Convolutional Neural Network (CNN) convolutional layer glass broken and cracked at the scene of road traffic accident. The image pyramid is constructed and used as the input of the CNN model, and the convolutional layer road traffic accident scene glass breakage and crack characteristics at each scale in the pyramid are extracted separately, and then the depth descriptors at different image scales are extracted. In order to improve the discriminative power of the depth descriptor, Hellinger kernel and Principal Component Analysis (PCA) are used to perform nonlinear and linear transformations. Two aggregation strategies based on depth descriptors are proposed to form a global image representation. The classification experiment of the data set shows that Hellinger kernel, PCA transformation, and two aggregation strategies are all conducive to improving the classification accuracy. In addition, the convolutional layer road traffic accident scene glass breaking and crack feature coding can obtain better classification performance than the fully connected layer feature. We conducted dynamic impact tests on plate glass and Polyvinyl Butyral- (PVB-) laminated glass under different boundary conditions and studied the crack propagation and failure process of the glass under different impact speeds. The results show that there are radial cracks and circular cracks on the glass specimens under the impact load; the glass specimens show partial damage under high-speed impact and the characteristics of glass breaking and cracks at the scene of road traffic accidents; the four-frame plate glass is supported by sharp dagger-like fragments. This paper compares the energy absorption of glass specimens under different boundary conditions. The results show that the energy absorption effect of the four-point supporting glass specimen is generally stronger than that of the four-frame supporting glass.

Suggested Citation

  • Shuai Liang & Wei Wang, 2021. "Feature Extraction of Broken Glass Cracks in Road Traffic Accident Site Based on Deep Learning," Complexity, Hindawi, vol. 2021, pages 1-12, May.
  • Handle: RePEc:hin:complx:5527076
    DOI: 10.1155/2021/5527076
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5527076.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5527076.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5527076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5527076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.