Author
Abstract
Based on the adaptive particle swarm algorithm and error backpropagation neural network, this paper proposes methods for different styles of music classification and migration visualization. This method has the advantages of simple structure, mature algorithm, and accurate optimization. It can find better network weights and thresholds so that particles can jump out of the local optimal solutions previously searched and search in a larger space. The global search uses the gradient method to accelerate the optimization and control the real-time generation effect of the music style transfer, thereby improving the learning performance and convergence performance of the entire network, ultimately improving the recognition rate of the entire system, and visualizing the musical perception. This kind of real-time information visualization is an artistic expression form, in which artificial intelligence imitates human synesthesia, and it is also a kind of performance art. Combining traditional music visualization and image style transfer adds specific content expression to music visualization and time sequence expression to image style transfer. This visual effect can help users generate unique and personalized portraits with music; it can also be widely used by artists to express the relationship between music and vision. The simulation results show that the method has better classification performance and has certain practical significance and reference value.
Suggested Citation
Xiahan Liu & Zhihan Lv, 2021.
"An Improved Particle Swarm Optimization-Powered Adaptive Classification and Migration Visualization for Music Style,"
Complexity, Hindawi, vol. 2021, pages 1-10, April.
Handle:
RePEc:hin:complx:5515095
DOI: 10.1155/2021/5515095
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5515095. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.