IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5513355.html
   My bibliography  Save this article

Music Personalized Label Clustering and Recommendation Visualization

Author

Listed:
  • Yongkang Huo
  • Wei Wang

Abstract

With the advent of big data, the performance of traditional recommendation algorithms is no longer enough to meet the demand. Most people do not leave too many comments and other data when using the application. In this case, the user data are too scattered and discrete, with obvious data sparsity problems. First, this paper describes the main ideas and methods used in current recommendation systems and summarizes the areas that need attention and consideration. Based on these algorithms and based on the user history data information and music data information that can be found now, the paper aims to build a personalized music recommendation system based on directed tags, which can provide basic music services to users and push them personalized music recommendation lists. Then, the collaborative filtering algorithm based on tags is introduced. Usually this method uses discrete tags, and the user tags and music tags are juxtaposed and leveled with each other, which does not reflect the importance and ranking order relationship of each tag and does not reflect the cognitive sequence of users when they listen to and annotate music. In order to improve this problem and increase the accuracy of recommendations, the user-tag and music-tag data are correlated through the tag sequence of tag and music-tag data are correlated and modeled analytically, and feature directed graphs are constructed.

Suggested Citation

  • Yongkang Huo & Wei Wang, 2021. "Music Personalized Label Clustering and Recommendation Visualization," Complexity, Hindawi, vol. 2021, pages 1-8, March.
  • Handle: RePEc:hin:complx:5513355
    DOI: 10.1155/2021/5513355
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5513355.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/5513355.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5513355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5513355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.