IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5424236.html
   My bibliography  Save this article

Application of RSSD-OCYCBD Strategy in Enhanced Fault Detection of Rolling Bearing

Author

Listed:
  • Xiaolong Wang
  • Guiji Tang
  • Yuling He

Abstract

The defect characteristics of rolling bearing are difficult to excavate at the incipient injury phase; in order to effectively solve this issue, an original strategy fusing recursive singular spectrum decomposition (RSSD) with optimized cyclostationary blind deconvolution (OCYCBD) is put forward to achieve fault characteristic enhanced detection. In this diagnosis strategy, the data-driven RSSD method without predetermined component number is proposed. In addition, a new morphological difference operation entropy (MDOE) indicator, which takes advantage of morphological transformation and Shannon entropy, is developed for confirming the influencing parameters of cyclostationary blind deconvolution (CYCBD). During the process of fault detection, RSSD is firstly adopted to preprocess the original signal, and the most sensitive singular spectrum component (SSC) is selected by the envelope spectrum peak (ESP) indicator. Then, the grid search algorithm is adopted to precisely confirm the optimal parameters and OCYCBD is further performed as a postprocessing technology on the most sensitive component to suppress the residual interferences and amplify the fault signatures. Finally, the enhanced fault detection of rolling bearing is able to achieve by analyzing the envelope spectrum of deconvolution signal. The feasibility of the proposed strategy is verified by the simulated and the measured signals, respectively, and its superiority is also demonstrated through several comparison methods. The results manifest this novel strategy has praisable advantages on weak characteristic extraction and intensification.

Suggested Citation

  • Xiaolong Wang & Guiji Tang & Yuling He, 2020. "Application of RSSD-OCYCBD Strategy in Enhanced Fault Detection of Rolling Bearing," Complexity, Hindawi, vol. 2020, pages 1-24, February.
  • Handle: RePEc:hin:complx:5424236
    DOI: 10.1155/2020/5424236
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/5424236.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/5424236.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5424236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5424236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.