Author
Listed:
- Leonid N. Yasnitsky
- Vitaly L. Yasnitsky
- Aleksander O. Alekseev
- Jun Yang
Abstract
In the modern scientific literature, there are many reports about the successful application of neural network technologies for solving complex applied problems, in particular, for modeling the urban real estate market. There are neural network models that can perform mass assessment of real estate objects taking into account their construction and operational characteristics. However, these models are static because they do not take into account the changing economic situation over time. Therefore, they quickly become outdated and need frequent updates. In addition, if they are designed for a specific city, they are not suitable for other cities. On the other hand, there are several dynamic models taking into account the overall state of the economy and designed to predict and study the overall price situation in real estate markets. Such dynamic models are not intended for mass real estate appraisals. The aim of this article is to develop a methodology and create a complex model that has the properties of both static and dynamic models. Moreover, our comprehensive model should be suitable for evaluating real estate in many cities at once. This aim is achieved since our model is based on a neural network trained on examples considering both construction and operational characteristics, as well as geographical and environmental characteristics, along with time-changing macroeconomic parameters that describe the economic state of a specific region, country, and the world. A set of examples for training and testing the neural network were formed on the basis of statistical data of real estate markets in a number of Russian cities for the period from 2006 to 2020. Thus, many examples included the data relating to the periods of the economic calm for Russia, along with the periods of crisis, recovery, and growth of the Russian and global economy. Due to this, the model remains relevant with the changes of the international economic situation and it takes into account the specifics of regions. The model proved to be suitable for solving the following tasks: industrial economic analysis, company strategic and operational management, analytical and consulting support of investment, and construction activities of professional market participants. The model can also be used by government agencies authorized to conduct public cadastral assessment for calculating property taxes.
Suggested Citation
Leonid N. Yasnitsky & Vitaly L. Yasnitsky & Aleksander O. Alekseev & Jun Yang, 2021.
"The Complex Neural Network Model for Mass Appraisal and Scenario Forecasting of the Urban Real Estate Market Value That Adapts Itself to Space and Time,"
Complexity, Hindawi, vol. 2021, pages 1-17, March.
Handle:
RePEc:hin:complx:5392170
DOI: 10.1155/2021/5392170
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5392170. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.