Author
Listed:
- Min Mou
- Da Lin
- Yuhao Zhou
- Wenguang Zheng
- Jiongming Ruan
- Dongdong Ke
Abstract
Aiming at the problems of complex structures, variable loads, and fluctuation of power outputs of multienergy networks, this paper proposes an optimal allocation strategy of multienergy networks based on the double-layer nondominated sorting genetic algorithm, which can optimize the allocation of distributed generation (DG) and then improve the system economy. In this strategy, the multiobjective nondominated sorting genetic algorithm is adopted in both layers, and the second-layer optimization is based on the optimization result of the first layer. The first layer is based on the structure and load of the multienergy network. With the purpose of minimizing the active power loss and the node voltage offset, an optimization model of the multienergy network is established, which uses the multiobjective nondominated sorting genetic algorithm to solve the installation location and the capacity of DGs in multienergy networks. In the second layer, according to the optimization results of the first layer and the characteristics of different DGs (wind power generator, photovoltaic panel, microturbine, and storage battery), the optimization model of the multienergy network is established to improve the economy, reliability, and environmental benefits of multienergy networks. It uses the multiobjective nondominated sorting genetic algorithm to solve the allocation capacity of different DGs so as to solve the optimal allocation problem of node capacity in multienergy networks. The double-layer optimization strategy proposed in this paper greatly promotes the development of multienergy networks and provides effective guidance for the optimal allocation and reliable operation of multienergy networks.
Suggested Citation
Min Mou & Da Lin & Yuhao Zhou & Wenguang Zheng & Jiongming Ruan & Dongdong Ke, 2019.
"An Optimal Allocation Strategy for Multienergy Networks Based on Double-Layer Nondominated Sorting Genetic Algorithms,"
Complexity, Hindawi, vol. 2019, pages 1-11, October.
Handle:
RePEc:hin:complx:5367403
DOI: 10.1155/2019/5367403
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5367403. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.