Author
Listed:
- Fuad S. Al-Duais
- Mohammed Alhagyan
- Ahmed Mostafa Khalil
Abstract
Majority research studies in the literature determine the weighted coefficients of balanced loss function by suggesting some arbitrary values and then conducting comparison study to choose the best. However, this methodology is not efficient because there is no guarantee ensures that one of the chosen values is the best. This encouraged us to look for mathematical method that gives and guarantees the best values of the weighted coefficients. The proposed methodology in this research is to employ the nonlinear programming in determining the weighted coefficients of balanced loss function instead of the unguaranteed old methods. In this research, we consider two balanced loss functions including balanced square error (BSE) loss function and balanced linear exponential (BLINEX) loss function to estimate the parameter and reliability function of inverse Rayleigh distribution (IRD) based on lower record values. Comparisons are made between Bayesian estimators (SE, BSE, LINEX, and BLINEX) and maximum likelihood estimator via Monte Carlo simulation. The evaluation was done based on absolute bias and mean square errors. The outputs of the simulation showed that the balanced linear exponential (BLINEX) loss function has the best performance. Moreover, the simulation verified that the balanced loss functions are always better than corresponding loss function.
Suggested Citation
Fuad S. Al-Duais & Mohammed Alhagyan & Ahmed Mostafa Khalil, 2021.
"Nonlinear Programming to Determine Best Weighted Coefficient of Balanced LINEX Loss Function Based on Lower Record Values,"
Complexity, Hindawi, vol. 2021, pages 1-6, June.
Handle:
RePEc:hin:complx:5273191
DOI: 10.1155/2021/5273191
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5273191. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.