IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5238028.html
   My bibliography  Save this article

A Pervasive Approach to EEG-Based Depression Detection

Author

Listed:
  • Hanshu Cai
  • Jiashuo Han
  • Yunfei Chen
  • Xiaocong Sha
  • Ziyang Wang
  • Bin Hu
  • Jing Yang
  • Lei Feng
  • Zhijie Ding
  • Yiqiang Chen
  • Jürg Gutknecht

Abstract

Nowadays, depression is the world’s major health concern and economic burden worldwide. However, due to the limitations of current methods for depression diagnosis, a pervasive and objective approach is essential. In the present study, a psychophysiological database, containing 213 (92 depressed patients and 121 normal controls) subjects, was constructed. The electroencephalogram (EEG) signals of all participants under resting state and sound stimulation were collected using a pervasive prefrontal-lobe three-electrode EEG system at Fp1, Fp2, and Fpz electrode sites. After denoising using the Finite Impulse Response filter combining the Kalman derivation formula, Discrete Wavelet Transformation, and an Adaptive Predictor Filter, a total of 270 linear and nonlinear features were extracted. Then, the minimal-redundancy-maximal-relevance feature selection technique reduced the dimensionality of the feature space. Four classification methods (Support Vector Machine, K -Nearest Neighbor, Classification Trees, and Artificial Neural Network) distinguished the depressed participants from normal controls. The classifiers’ performances were evaluated using 10-fold cross-validation. The results showed that K -Nearest Neighbor (KNN) had the highest accuracy of 79.27%. The result also suggested that the absolute power of the theta wave might be a valid characteristic for discriminating depression. This study proves the feasibility of a pervasive three-electrode EEG acquisition system for depression diagnosis.

Suggested Citation

  • Hanshu Cai & Jiashuo Han & Yunfei Chen & Xiaocong Sha & Ziyang Wang & Bin Hu & Jing Yang & Lei Feng & Zhijie Ding & Yiqiang Chen & Jürg Gutknecht, 2018. "A Pervasive Approach to EEG-Based Depression Detection," Complexity, Hindawi, vol. 2018, pages 1-13, February.
  • Handle: RePEc:hin:complx:5238028
    DOI: 10.1155/2018/5238028
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/5238028.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/5238028.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/5238028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tasci, Gulay & Gun, Mehmet Veysel & Keles, Tugce & Tasci, Burak & Barua, Prabal Datta & Tasci, Irem & Dogan, Sengul & Baygin, Mehmet & Palmer, Elizabeth Emma & Tuncer, Turker & Ooi, Chui Ping & Achary, 2023. "QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Mengxin Liu & Wenyuan Tao & Xiao Zhang & Yi Chen & Jie Li & Chung-Ming Own, 2019. "GO Loss: A Gaussian Distribution-Based Orthogonal Decomposition Loss for Classification," Complexity, Hindawi, vol. 2019, pages 1-10, December.
    3. Zhijiang Wan & Hao Zhang & Jiajin Huang & Haiyan Zhou & Jie Yang & Ning Zhong, 2019. "Single-Channel EEG-Based Machine Learning Method for Prescreening Major Depressive Disorder," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1579-1603, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5238028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.