IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5071267.html
   My bibliography  Save this article

A Hybrid Grey Prediction Model for Small Oscillation Sequence Based on Information Decomposition

Author

Listed:
  • Meng Zhou
  • Bo Zeng
  • Wenhao Zhou

Abstract

Grey prediction model has good performance in solving small data problem, and has been widely used in various research fields. However, when the data show oscillation characteristic, the effect of grey prediction model performs poor. To this end, a new method was proposed to solve the problem of modelling small data oscillation sequence with grey prediction model. Based on the idea of information decomposition, the new method employed grey prediction model to capture the trend characteristic of complex system, and ARMA model was applied to describe the random oscillation characteristic of the system. Crops disaster area in China was selected as a case study and the relevant historical eight-year data published by government department were substituted to the proposed model. The modelling results of the new model were compared with those of other traditional mainstream prediction models. The results showed that the new model had evidently superior performance. It indicated that the proposed model will contribute to solve small oscillation problems and have positive significance for improving the applicability of grey prediction model.

Suggested Citation

  • Meng Zhou & Bo Zeng & Wenhao Zhou, 2020. "A Hybrid Grey Prediction Model for Small Oscillation Sequence Based on Information Decomposition," Complexity, Hindawi, vol. 2020, pages 1-13, January.
  • Handle: RePEc:hin:complx:5071267
    DOI: 10.1155/2020/5071267
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/5071267.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/5071267.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5071267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yelin Wang & Ping Yang & Zan Song & Julien Chevallier & Qingtai Xiao, 2024. "Intelligent Prediction of Annual CO2 Emissions Under Data Decomposition Mode," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 711-740, February.
    2. Wenqing Wu & Xin Ma & Bo Zeng & Yuanyuan Zhang & Wanpeng Li, 2021. "Forecasting short-term solar energy generation in Asia Pacific using a nonlinear grey Bernoulli model with time power term," Energy & Environment, , vol. 32(5), pages 759-783, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5071267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.