Author
Listed:
- Lei Zhang
- Wei Liu
- Zhihan Lv
Abstract
By investigating the status quo of the swimming training market in a certain area, we can obtain information on the current development of the swimming training market in a certain area and study the laws of the development of the market so as to provide a theoretical basis for the development of the market. This paper designs an evaluation algorithm suitable for swimming training based on the improved AlexNet network. The algorithm model uses a 3 × 3 size convolution kernel to extract features, and the pooling layer uses a nonoverlapping pooling strategy. In order to accelerate the network convergence, the model introduces batch normalization technology. The algorithm uses data augmentation technology to expand the data set, including rotation and random erasure, to a certain extent alleviating the problem of overfitting. The results of the study showed that there were no significant differences in fat, minerals, protein, body mass index, basal metabolic rate, and total energy expenditure in the body composition ratios of children in the convolutional neural network assessment group and the control group, while muscle and total body water were not significantly different. However, there are significant differences in fat-free body weight and muscle strength of various segments of the body, among which there are very significant differences in muscle strength of lower limbs in each segment of the body. There were no significant differences in minerals, body mass index, basal metabolic rate, total energy expenditure, and lower limb muscle strength in the body composition ratios of men and women in the convolutional neural network assessment group. There are significant differences in body weight, upper limb muscle strength, and trunk muscle strength. There were no significant differences in the proportions of body composition between men and women in the control group, except for fat and protein.
Suggested Citation
Lei Zhang & Wei Liu & Zhihan Lv, 2021.
"Swimming Training Evaluation Method Based on Convolutional Neural Network,"
Complexity, Hindawi, vol. 2021, pages 1-12, May.
Handle:
RePEc:hin:complx:4868399
DOI: 10.1155/2021/4868399
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4868399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.