IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4834165.html
   My bibliography  Save this article

Mathematical Modelling of the Inhibitory Role of Regulatory T Cells in Tumor Immune Response

Author

Listed:
  • Zhongtao Yang
  • Cuihong Yang
  • Yueping Dong
  • Yasuhiro Takeuchi

Abstract

The immune system against tumors acts through a complex dynamical process showing a dual role. On the one hand, the immune system can activate some immune cells to kill tumor cells (TCs), such as cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs), but on the other hand, more evidence shows that some immune cells can help tumor escape, such as regulatory T cells (Tregs). In this paper, we propose a tumor immune interaction model based on Tregs-mediated tumor immune escape mechanism. When helper T cells’ (HTCs) stimulation rate by the presence of identified tumor antigens is below critical value, the coexistence (tumor and immune) equilibrium is always stable in its existence region. When HTCs stimulation rate is higher than the critical value, the inhibition rate of effector cells (ECs) by Tregs can destabilize the coexistence equilibrium and cause Hopf bifurcations and produce a limit cycle. This model shows that Tregs might play a crucial role in triggering the tumor immune escape. Furthermore, we introduce the adoptive cellular immunotherapy (ACI) and monoclonal antibody immunotherapy (MAI) as the treatment to boost the immune system to fight against tumors. The numerical results show that ACI can control TCs more, while MAI can delay the inhibitory effect of Tregs on ECs. The result also shows that the combination of both immunotherapies can control TCs and reduce the inhibitory effect of Tregs better than a single immunotherapy can control.

Suggested Citation

  • Zhongtao Yang & Cuihong Yang & Yueping Dong & Yasuhiro Takeuchi, 2020. "Mathematical Modelling of the Inhibitory Role of Regulatory T Cells in Tumor Immune Response," Complexity, Hindawi, vol. 2020, pages 1-21, August.
  • Handle: RePEc:hin:complx:4834165
    DOI: 10.1155/2020/4834165
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/4834165.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/4834165.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/4834165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dehingia, Kaushik & Das, Parthasakha & Upadhyay, Ranjit Kumar & Misra, Arvind Kumar & Rihan, Fathalla A. & Hosseini, Kamyar, 2023. "Modelling and analysis of delayed tumour–immune system with hunting T-cells," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 669-684.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4834165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.