IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4816712.html
   My bibliography  Save this article

Terrain Adaptive Estimation of Instantaneous Centres of Rotation for Tracked Robots

Author

Listed:
  • Cuifeng Wang
  • Wenjun Lv
  • Xiaochuan Li
  • Mingliang Mei

Abstract

As a type of skid-steering mobile robot, the tracked robot suffers from inevitable slippage, which results in an imprecise kinematics model and a degradation of performance during navigation. Compared with the traditional robot, the kinematics model is able to reflect the influences of slippage through the introduction of instantaneous centres of rotation (ICRs). However, ICRs cannot be measured directly and are time-varying with terrain variation, and thus, here, we aim to develop an online estimation method to acquire the ICRs of a robot by means of data fusion technologies. First, an innovation-based extended Kalman filter (IEKF) is employed to fuse the readings from two incremental encoders and a GPS-compass integrated sensor, to provide a real-time ICR estimation. Second, a decision tree-based learning system is used to classify the terrains that the robot traverses, according to the vibration signals gathered by an accelerometer. The results of this terrain classification are improved via a Bayesian filter, by utilizing temporal correlation in the terrain time series. Third, the performances of the ICR estimation and terrain classification are mutually promoted. On one hand, terrain variation is detected with the aid of the terrain classification, and therefore, the process noise variance of IEKF can be automatically adjusted. Hence, the results of ICR estimation are smooth if the terrain does not change and converge rapidly upon terrain variation. On the other hand, the sudden changes in innovation are used to adjust the state transition probability during the recursive calculation of the Bayesian filter, thus increasing the accuracy of the terrain classification. A real-world experiment was undertaken on a tracked robot to validate the effectiveness of the proposed method. It is also demonstrated that the terrain adaptive odometry outperforms the traditional approach with the knowledge of ICRs.

Suggested Citation

  • Cuifeng Wang & Wenjun Lv & Xiaochuan Li & Mingliang Mei, 2018. "Terrain Adaptive Estimation of Instantaneous Centres of Rotation for Tracked Robots," Complexity, Hindawi, vol. 2018, pages 1-10, November.
  • Handle: RePEc:hin:complx:4816712
    DOI: 10.1155/2018/4816712
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/4816712.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/4816712.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/4816712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4816712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.