IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4534822.html
   My bibliography  Save this article

Estimating Daily Rice Crop Evapotranspiration in Limited Climatic Data and Utilizing the Soft Computing Algorithms MLP, RBF, GRNN, and GMDH

Author

Listed:
  • Pouya Aghelpour
  • Hadigheh Bahrami-Pichaghchi
  • Farzaneh Karimpour
  • Zhichao Jiang

Abstract

Evapotranspiration represents the water requirement of plants during their growing season, and its accurate measurement at the farm is essential for agricultural water planners and managers. Field measurements of evapotranspiration have always been associated with many difficulties that have led researchers to seek a way to remotely measure this component in horticultural and agricultural areas. This study aims to investigate an indirect approach for daily rice crop evapotranspiration (ETc) measurement by machine learning (ML) techniques and the least available climatic variables. For this purpose, daily meteorological variables were obtained from three ground meteorological stations in rice cultivation regions of northern Iran during 2003–2016. The ETc rates were calculated by seven meteorological variables, the FAO-56 Penman-Monteith equation, and the regional calibrated rice crop coefficient and considered as the reference data. The MLs, including Multilayer Perceptron (MLP), Radial Basis Function (RBF), Generalized Regression Neural Network (GRNN), and Group Method of Data Handling (GMDH), were utilized for ETc modeling. Different input combinations were applied, based on the use of minimum effective variables as input. Results showed that the models showed the most accurate performances in the input combination of four climatic variables: sunshine duration, maximum temperature, relative humidity, and wind speed. Investigating the accuracy of models in rice growth phases showed that the least estimation error belonged to the initial growing stage, which increased during the mid-season and late-season growing stages. A comparison of the models showed that the GMDH model performed better against the other competitors. For this model, both the Nash-Sutcliffe (NS) coefficient and R2 were greater than 0.98, and the Root Mean Square Error (RMSE) ranged between 0.214 and 0.234 mm per day in all stations. The current approach showed promising results in rice evapotranspiration modeling by only four common meteorological variables and can be reliably applied for indirect measurement of this variable over the rice farms. The studied approach will have research value for rice and other crops in similar/different climatic conditions.

Suggested Citation

  • Pouya Aghelpour & Hadigheh Bahrami-Pichaghchi & Farzaneh Karimpour & Zhichao Jiang, 2022. "Estimating Daily Rice Crop Evapotranspiration in Limited Climatic Data and Utilizing the Soft Computing Algorithms MLP, RBF, GRNN, and GMDH," Complexity, Hindawi, vol. 2022, pages 1-18, July.
  • Handle: RePEc:hin:complx:4534822
    DOI: 10.1155/2022/4534822
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2022/4534822.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2022/4534822.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/4534822?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4534822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.