IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4529429.html
   My bibliography  Save this article

An Entropy-Based Self-Adaptive Node Importance Evaluation Method for Complex Networks

Author

Listed:
  • Qibo Sun
  • Guoyu Yang
  • Ao Zhou

Abstract

Identifying important nodes in complex networks is essential in disease transmission control, network attack protection, and valuable information detection. Many evaluation indicators, such as degree centrality, betweenness centrality, and closeness centrality, have been proposed to identify important nodes. Some researchers assign different weight to different indicator and combine them together to obtain the final evaluation results. However, the weight is usually subjectively assigned based on the researcher’s experience, which may lead to inaccurate results. In this paper, we propose an entropy-based self-adaptive node importance evaluation method to evaluate node importance objectively. Firstly, based on complex network theory, we select four indicators to reflect different characteristics of the network structure. Secondly, we calculate the weights of different indicators based on information entropy theory. Finally, based on aforesaid steps, the node importance is obtained by weighted average method. The experimental results show that our method performs better than the existing methods.

Suggested Citation

  • Qibo Sun & Guoyu Yang & Ao Zhou, 2020. "An Entropy-Based Self-Adaptive Node Importance Evaluation Method for Complex Networks," Complexity, Hindawi, vol. 2020, pages 1-13, April.
  • Handle: RePEc:hin:complx:4529429
    DOI: 10.1155/2020/4529429
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/4529429.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/4529429.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/4529429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Wang & Zhi Dong & Jichang Dong, 2023. "Assessment of the Drivers and Effects of International Science and Technology Cooperation in Xinjiang in the Context of the Belt and Road Initiative," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
    2. Wang, Ning & Gao, Ying & He, Jia-tao & Yang, Jun, 2022. "Robustness evaluation of the air cargo network considering node importance and attack cost," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4529429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.