IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4465151.html
   My bibliography  Save this article

Symbolic Encoding of Periodic Orbits and Chaos in the Rucklidge System

Author

Listed:
  • Chengwei Dong
  • Lian Jia
  • Qi Jie
  • Hantao Li
  • Eric Campos

Abstract

To describe and analyze the unstable periodic orbits of the Rucklidge system, a so-called symbolic encoding method is introduced, which has been proven to be an efficient tool to explore the topological properties concealed in these periodic orbits. In this work, the unstable periodic orbits up to a certain topological length in the Rucklidge system are systematically investigated via a proposed variational method. The dynamics in the Rucklidge system are explored by using phase portrait analysis, Lyapunov exponents, and Poincaré first return maps. Symbolic encodings of the periodic orbits with two and four letters based on the trajectory topology in the phase space are implemented under two sets of parameter values. Meanwhile, the bifurcations of the periodic orbits are explored, significantly improving the understanding of the dynamics of the Rucklidge system. The multiple-letter symbolic encoding method could also be applicable to other nonlinear dynamical systems.

Suggested Citation

  • Chengwei Dong & Lian Jia & Qi Jie & Hantao Li & Eric Campos, 2021. "Symbolic Encoding of Periodic Orbits and Chaos in the Rucklidge System," Complexity, Hindawi, vol. 2021, pages 1-16, August.
  • Handle: RePEc:hin:complx:4465151
    DOI: 10.1155/2021/4465151
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/4465151.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/4465151.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/4465151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Chengwei & Liu, Huihui & Jie, Qi & Li, Hantao, 2022. "Topological classification of periodic orbits in the generalized Lorenz-type system with diverse symbolic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4465151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.