IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4203158.html
   My bibliography  Save this article

Analyzing Knowledge Retrieval Impairments Associated with Alzheimer’s Disease Using Network Analyses

Author

Listed:
  • Jeffrey C. Zemla
  • Joseph L. Austerweil

Abstract

A defining characteristic of Alzheimer’s disease is difficulty in retrieving semantic memories, or memories encoding facts and knowledge. While it has been suggested that this impairment is caused by a degradation of the semantic store, the precise ways in which the semantic store is degraded are not well understood. Using a longitudinal corpus of semantic fluency data (listing of items in a category), we derive semantic network representations of patients with Alzheimer’s disease and of healthy controls. We contrast our network-based approach with analyzing fluency data with the standard method of counting the total number of items and perseverations in fluency data. We find that the networks of Alzheimer’s patients are more connected and that those connections are more randomly distributed than the connections in networks of healthy individuals. These results suggest that the semantic memory impairment of Alzheimer’s patients can be modeled through the inclusion of spurious associations between unrelated concepts in the semantic store. We also find that information from our network analysis of fluency data improves prediction of patient diagnosis compared to traditional measures of the semantic fluency task.

Suggested Citation

  • Jeffrey C. Zemla & Joseph L. Austerweil, 2019. "Analyzing Knowledge Retrieval Impairments Associated with Alzheimer’s Disease Using Network Analyses," Complexity, Hindawi, vol. 2019, pages 1-12, May.
  • Handle: RePEc:hin:complx:4203158
    DOI: 10.1155/2019/4203158
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/4203158.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/4203158.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/4203158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stella, Massimo, 2020. "Multiplex networks quantify robustness of the mental lexicon to catastrophic concept failures, aphasic degradation and ageing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4203158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.