IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4154673.html
   My bibliography  Save this article

The Performance Study on the Long-Span Bridge Involving the Wireless Sensor Network Technology in a Big Data Environment

Author

Listed:
  • Liwen Zhang
  • Chao Zhang
  • Zhuo Sun
  • You Dong
  • Pu Wei

Abstract

The random traffic flow model which considers parameters of all the vehicles passing through the bridge, including arrival time, vehicle speed, vehicle type, vehicle weight, and horizontal position as well as the bridge deck roughness, is input into the vehicle-bridge coupling vibration program. In this way, vehicle-bridge coupling vibration responses with considering the random traffic flow can be numerically simulated. Experimental test is used to validate the numerical simulation, and they had the consistent changing trends. This result proves the reliability of the vehicle-bridge coupling model in this paper. However, the computational process of this method is complicated and proposes high requirements for computer performance and resources. Therefore, this paper considers using a more advanced intelligent method to predict vibration responses of the long-span bridge. The PSO-BP (particle swarm optimization-back propagation) neural network model is proposed to predict vibration responses of the long-span bridge. Predicted values and real values at each point basically have the consistent changing trends, and the maximum error is less than 10%. Hence, it is feasible to predict vibration responses of the long-span bridge using the PSO-BP neural network model. In order to verify advantages of the predicting model, it is compared with the BP neural network model and GA-BP neural network model. The PSO-BP neural network model converges to the set critical error after it is iterated to the 226th generation, while the other two neural network models are not converged. In addition, the relative error of predicted values using PSO-BP neural network is only 2.71%, which is obviously less than the predicted results of other two neural network models. We can find that the PSO-BP neural network model proposed by the paper in predicting vibration responses is highly efficient and accurate.

Suggested Citation

  • Liwen Zhang & Chao Zhang & Zhuo Sun & You Dong & Pu Wei, 2018. "The Performance Study on the Long-Span Bridge Involving the Wireless Sensor Network Technology in a Big Data Environment," Complexity, Hindawi, vol. 2018, pages 1-13, June.
  • Handle: RePEc:hin:complx:4154673
    DOI: 10.1155/2018/4154673
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/4154673.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/4154673.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/4154673?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4154673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.