IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4140762.html
   My bibliography  Save this article

Chaos and Symbol Complexity in a Conformable Fractional-Order Memcapacitor System

Author

Listed:
  • Shaobo He
  • Santo Banerjee
  • Bo Yan

Abstract

Application of conformable fractional calculus in nonlinear dynamics is a new topic, and it has received increasing interests in recent years. In this paper, numerical solution of a conformable fractional nonlinear system is obtained based on the conformable differential transform method. Dynamics of a conformable fractional memcapacitor (CFM) system is analyzed by means of bifurcation diagram and Lyapunov characteristic exponents (LCEs). Rich dynamics is found, and coexisting attractors and transient state are observed. Symbol complexity of the CFM system is estimated by employing the symbolic entropy (SybEn) algorithm, symbolic spectral entropy (SybSEn) algorithm, and symbolic C 0 (SybC 0 ) algorithm. It shows that pseudorandom sequences generated by the system have high complexity and pass the rigorous NIST test. Results demonstrate that the conformable memcapacitor nonlinear system can also be a good model for real applications.

Suggested Citation

  • Shaobo He & Santo Banerjee & Bo Yan, 2018. "Chaos and Symbol Complexity in a Conformable Fractional-Order Memcapacitor System," Complexity, Hindawi, vol. 2018, pages 1-15, August.
  • Handle: RePEc:hin:complx:4140762
    DOI: 10.1155/2018/4140762
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/4140762.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/4140762.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/4140762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kachia, Krunal & Solís-Pérez, J.E. & Gómez-Aguilar, J.F., 2020. "Chaos in a three-cell population cancer model with variable-order fractional derivative with power, exponential and Mittag-Leffler memories," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Wang, Jieyang & Mou, Jun & Xiong, Li & Zhang, Yingqian & Cao, Yinghong, 2021. "Fractional-order design of a novel non-autonomous laser chaotic system with compound nonlinearity and its circuit realization," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Khalil, Nariman A. & Said, Lobna A. & Radwan, Ahmed G. & Soliman, Ahmed M., 2020. "Emulation circuits of fractional-order memelements with multiple pinched points and their applications," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Gu, Shuangquan & He, Shaobo & Wang, Huihai & Du, Baoxiang, 2021. "Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    5. Palit, Sanjay K. & Mukherjee, Sayan, 2021. "A study on dynamics and multiscale complexity of a neuro system," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4140762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.