IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4047894.html
   My bibliography  Save this article

Semantic-Aware Top-k Multirequest Optimal Route

Author

Listed:
  • Shuang Wang
  • Yingchun Xu
  • Yinzhe Wang
  • Hezhi Liu
  • Qiaoqiao Zhang
  • Tiemin Ma
  • Shengnan Liu
  • Siyuan Zhang
  • Anliang Li

Abstract

In recent years, research on location-based services has received a lot of interest, in both industry and academic aspects, due to a wide range of potential applications. Among them, one of the active topic areas is the route planning on a point-of-interest (POI) network. We study the top-k optimal routes querying on large, general graphs where the edge weights may not satisfy the triangle inequality. The query strives to find the top-k optimal routes from a given source, which must visit a number of vertices with all the services that the user needs. Existing POI query methods mainly focus on the textual similarities and ignore the semantic understanding of keywords in spatial objects and queries. To address this problem, this paper studies the semantic similarity of POI keyword searching in the route. Another problem is that most of the previous studies consider that a POI belongs to a category, and they do not consider that a POI may provide various kinds of services even in the same category. So, we propose a novel top-k optimal route planning algorithm based on semantic perception (KOR-SP). In KOR-SP, we define a dominance relationship between two partially explored routes which leads to a smaller searching space and consider the semantic similarity of keywords and the number of single POI’s services. We use an efficient label indexing technique for the shortest path queries to further improve efficiency. Finally, we perform an extensive experimental evaluation on multiple real-world graphs to demonstrate that the proposed methods deliver excellent performance.

Suggested Citation

  • Shuang Wang & Yingchun Xu & Yinzhe Wang & Hezhi Liu & Qiaoqiao Zhang & Tiemin Ma & Shengnan Liu & Siyuan Zhang & Anliang Li, 2019. "Semantic-Aware Top-k Multirequest Optimal Route," Complexity, Hindawi, vol. 2019, pages 1-15, May.
  • Handle: RePEc:hin:complx:4047894
    DOI: 10.1155/2019/4047894
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/4047894.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/4047894.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/4047894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lei Tang & Dandan Cai & Zongtao Duan & Junchi Ma & Meng Han & Hanbo Wang, 2019. "Discovering Travel Community for POI Recommendation on Location-Based Social Networks," Complexity, Hindawi, vol. 2019, pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laisong Kang & Shifeng Liu & Daqing Gong & Mincong Tang, 2021. "A personalized point-of-interest recommendation system for O2O commerce," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 253-267, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4047894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.