IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3635621.html
   My bibliography  Save this article

Mechanical Response and Parametric Sensitivity Analyses of a Drainage Pipe under Multiphysical Coupling Conditions

Author

Listed:
  • Bin Li
  • Hongyuan Fang
  • Kangjian Yang
  • Hang He
  • Peiling Tan
  • Fuming Wang

Abstract

Current research was not dedicated to investigate the mechanical behavior of a concrete drainage pipe under multiphysical coupling conditions of overburden pressure, traffic loads, groundwater, and pipe fluids. This study proposes a new numerical solution method for coupled stress, seepage, and flow fields based on a validated finite element model. The model was developed by ABAQUS and FLUENT and then solved simultaneously using the MpCCI (mesh-based parallel-code coupling interface) platform. Results show that the tensile stress at the springline and the radial displacement at the crown (or invert) of the bell under the effect of groundwater alone were reduced by 50.5% and 38.1%, respectively, compared to the effect of traffic load alone. Parametric analyses show that vehicle speed and fluid height have a slight impact on the pipes. The soil cover depth, wheel pressure, and gasket strength are directly proportional to the pipe stress and vertical displacement. Within the scope of their respective changes, the pipe stresses were increased by 34.4%, 36.7%, and 28.5%, and the vertical displacements were increased by 124%, 95.85%, and 87.7%. The bedding and backfill strengths are proportional to the pipe stress and inversely proportional to the vertical displacement. Within the scope of their respective changes, the pipe stresses were increased by 18.2% and 20.0%, and the vertical displacements were decreased by 11.4% and 10.4%. Sensitivity analyses show that soil cover depth has a greatest impact on the pipe, followed by traffic load.

Suggested Citation

  • Bin Li & Hongyuan Fang & Kangjian Yang & Hang He & Peiling Tan & Fuming Wang, 2019. "Mechanical Response and Parametric Sensitivity Analyses of a Drainage Pipe under Multiphysical Coupling Conditions," Complexity, Hindawi, vol. 2019, pages 1-24, November.
  • Handle: RePEc:hin:complx:3635621
    DOI: 10.1155/2019/3635621
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/3635621.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/3635621.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/3635621?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Frank & Robin Kamenicky & Dimitris Drikakis & Lee Thomas & Hans Ledin & Terry Wood, 2019. "Multiphase Flow Effects in a Horizontal Oil and Gas Separator," Energies, MDPI, vol. 12(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Janoszek & Wojciech Masny, 2021. "CFD Simulations of Allothermal Steam Gasification Process for Hydrogen Production," Energies, MDPI, vol. 14(6), pages 1-28, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3635621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.