IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3578736.html
   My bibliography  Save this article

Depth Penetration and Scope Extension of Failures in the Cascading of Multilayer Networks

Author

Listed:
  • Wen-Jun Jiang
  • Run-Ran Liu
  • Chun-Xiao Jia

Abstract

Real-world complex systems always interact with each other, which causes these systems to collapse in an avalanche or cascading manner in the case of random failures or malicious attacks. The robustness of multilayer networks has attracted great interest, where the modeling and theoretical studies of which always rely on the concept of multilayer networks and percolation methods. A straightforward and tacit assumption is that the interdependence across network layers is strong, which means that a node will fail entirely with the removal of all links if one of its interdependent nodes in other network layers fails. However, this oversimplification cannot describe the general form of interactions across the network layers in a real-world multilayer system. In this paper, we reveal the nature of the avalanche disintegration of general multilayer networks with arbitrary interdependency strength across network layers. Specifically, we identify that the avalanche process of the whole system can essentially be decomposed into two microscopic cascading dynamics in terms of the propagation direction of the failures: depth penetration and scope extension. In the process of depth penetration, the failures propagate from layer to layer, where the greater the number of failed nodes is, the greater is the destructive power that will emerge in an interdependency group. In the process of scope extension, failures propagate with the removal of connections in each network layer. Under the synergy of the two processes, we find that the percolation transition of the system can be discontinuous or continuous with changes in the interdependency strength across network layers, which means that a sudden system-wide collapse can be avoided by controlling the interdependency strength across network layers. Our work not only reveals the microscopic mechanism of global collapse in multilayer infrastructure systems but also provides stimulating ideas on intervention programs and approaches for cascade failures.

Suggested Citation

  • Wen-Jun Jiang & Run-Ran Liu & Chun-Xiao Jia, 2020. "Depth Penetration and Scope Extension of Failures in the Cascading of Multilayer Networks," Complexity, Hindawi, vol. 2020, pages 1-11, April.
  • Handle: RePEc:hin:complx:3578736
    DOI: 10.1155/2020/3578736
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/3578736.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/3578736.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/3578736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3578736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.