Author
Listed:
- Yuwei Wang
- Mofei Wen
- Zhihan Lv
Abstract
This paper presents an in-depth analysis of tennis match scene classification using an adaptive Gaussian mixture model parameter estimation simulation algorithm. We divided the main components of semantic analysis into type of motion, distance of motion, speed of motion, and landing area of the tennis ball. Firstly, for the problem that both people and tennis balls in the video frames of tennis matches from the surveillance viewpoint are very small, we propose an adaptive Gaussian mixture model parameter estimation algorithm, which has good accuracy and speed on small targets. Secondly, in this paper, we design a sports player tracking algorithm based on role division and continuously lock the target player to be tracked and output the player region. At the same time, based on the displacement information of the key points of the player’s body and the system running time, the distance and speed of the player’s movement are obtained. Then, for the problem that tennis balls are small and difficult to capture in high-speed motion, this paper designs a prior knowledge-based algorithm for predicting tennis ball motion and landing area to derive the landing area of tennis balls. Finally, this paper implements a prototype system for semantic analysis of real-time video of tennis matches and tests and analyzes the performance indexes of the system, and the results show that the system has good performance in real-time, accuracy, and stability.
Suggested Citation
Yuwei Wang & Mofei Wen & Zhihan Lv, 2021.
"Simulation of Tennis Match Scene Classification Algorithm Based on Adaptive Gaussian Mixture Model Parameter Estimation,"
Complexity, Hindawi, vol. 2021, pages 1-12, May.
Handle:
RePEc:hin:complx:3563077
DOI: 10.1155/2021/3563077
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3563077. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.