IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3489209.html
   My bibliography  Save this article

An Enhanced Two-Level Metaheuristic Algorithm with Adaptive Hybrid Neighborhood Structures for the Job-Shop Scheduling Problem

Author

Listed:
  • Pisut Pongchairerks

Abstract

For solving the job-shop scheduling problem (JSP), this paper proposes a novel two-level metaheuristic algorithm, where its upper-level algorithm controls the input parameters of its lower-level algorithm. The lower-level algorithm is a local search algorithm searching for an optimal JSP solution within a hybrid neighborhood structure. To generate each neighbor solution, the lower-level algorithm randomly uses one of two neighbor operators by a given probability. The upper-level algorithm is a population-based search algorithm developed for controlling the five input parameters of the lower-level algorithm, i.e., a perturbation operator, a scheduling direction, an ordered pair of two neighbor operators, a probability of selecting a neighbor operator, and a start solution-representing permutation. Many operators are proposed in this paper as options for the perturbation and neighbor operators. Under the control of the upper-level algorithm, the lower-level algorithm can be evolved in its input-parameter values and neighborhood structure. Moreover, with the perturbation operator and the start solution-representing permutation controlled, the two-level metaheuristic algorithm performs like a multistart iterated local search algorithm. The experiment’s results indicated that the two-level metaheuristic algorithm outperformed its previous variant and the two other high-performing algorithms in terms of solution quality.

Suggested Citation

  • Pisut Pongchairerks, 2020. "An Enhanced Two-Level Metaheuristic Algorithm with Adaptive Hybrid Neighborhood Structures for the Job-Shop Scheduling Problem," Complexity, Hindawi, vol. 2020, pages 1-15, June.
  • Handle: RePEc:hin:complx:3489209
    DOI: 10.1155/2020/3489209
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/3489209.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/3489209.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/3489209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pisut Pongchairerks, 2023. "A Probabilistic Hill-Climbing Algorithm for the Single-Source Transportation Problem," Sustainability, MDPI, vol. 15(5), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3489209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.