Author
Listed:
- Yufeng Jia
- Sang-Bing Tsai
- Zaoli Yang
Abstract
With the development of the Internet, the amount of information present on the network has grown rapidly, leading to increased difficulty in obtaining effective information. Especially for individuals, enterprises, and institutions with a large amount of information, it is an almost impossible task to integrate and analyze Internet information with great difficulty just by human resources. Internet hot events mining and analysis technology can effectively solve the above problems by alleviating information overload, integrating redundant information, and refining core information. In this paper, we address the above problems and research hot event topic sentence generation techniques in the field of hot event mining and design a hybrid event candidate set construction algorithm based on topic core word mapping and event triad selection. The algorithm uses the PAT-Tree technique to extract high-frequency core words in topic hotspots and maps the high-frequency words into sentences to generate a part of event core sentences. The other part of event core sentences is extracted from the topic hotspots by making event triples as candidate elements, and sentences containing event elements are extracted from the topic hotspots. The sets of event core sentences generated by the two methods are mixed and filtered and sorted to obtain the candidate set, which can be used to build a word graph-based main service channel (MSC) model. In this paper, we also propose an improved word graph-based MSC model and use it for the extraction of event topic sentences. Based on the above research, a hot event analysis system is implemented. The system analyzes the existing topic data and uses the event topic sentence generation algorithm studied in this paper to generate the titles of hot spots, that is, hot events. At the same time, the topics are displayed from different dimensions, and data visualization is completed. The visualization includes the trend change of event hotness, trend change of event sentiment polarity, and distribution of event article sources.
Suggested Citation
Yufeng Jia & Sang-Bing Tsai & Zaoli Yang, 2021.
"Digital Media Hotspot Mining Algorithm Implementation with Complex Systems in the Mobile Internet Environment,"
Complexity, Hindawi, vol. 2021, pages 1-11, December.
Handle:
RePEc:hin:complx:3471168
DOI: 10.1155/2021/3471168
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3471168. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.