IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3280777.html
   My bibliography  Save this article

Modeling the Public Transport Networks: A Study of Their Efficiency

Author

Listed:
  • Mary Luz Mouronte-López
  • Jing-Hu Pan

Abstract

The public transportation network (PTN) provides mobility and access to community resources, employment, medical care, infrastructures, and other resources in the city. This research studies the process of the formation of links among nodes in different real-world PTNs. We have found that this process may be appropriately explained by a generalized linear model (GLM) using local, global, and quasilocal similarity indexes as explanatory variables. In modeling, the response variable was described by a binomial probability density function, and the logit function was used as a link function. In the crossvalidation process, utilising a downsampling approach, both average accuracy and area under the receiver operating characteristic curve (AUC) metrics presented higher values than 0.99. The kappa parameter had magnitudes larger than 0.93 for most of the PTNs. In the final validation stage, recall and specificity metrics took the value 1. Accuracy and precision parameters were larger than 0.99 and 0.87, respectively, for the majority of PTNs. Only one of the PTNs required utilising a smoothed bootstrap approach in order to achieve better results. The similarity measures with the greatest influence on the model were determined. We also assessed the impact of link removal on the global efficiency of PTNs, considering several similarity indexes. Additionally, we find that most of the networks show low local and global efficiencies (≤0.20), as well as travel times with a relevant variability, exhibiting standard deviations larger than 790 seconds. Significant similarities exist between the cumulative probability distributions of the local efficiency in all PTNs. With respect to the centrality measures, the eigenvector centrality presented a strong correlation with the hub/authority centralities (>0.80), while the pagerank showed a moderate, high, or very high correlation with the degree in all PTNs, >0.50.

Suggested Citation

  • Mary Luz Mouronte-López & Jing-Hu Pan, 2021. "Modeling the Public Transport Networks: A Study of Their Efficiency," Complexity, Hindawi, vol. 2021, pages 1-19, August.
  • Handle: RePEc:hin:complx:3280777
    DOI: 10.1155/2021/3280777
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/3280777.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/3280777.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/3280777?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3280777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.