IDEAS home Printed from https://ideas.repec.org/a/hin/complx/3256596.html
   My bibliography  Save this article

Dual-Source Optimization of the “Diverting Water from the Yangtze River to Tai Lake (DWYRTL)” Project Based on the Euler Method

Author

Listed:
  • Ruichen Xu
  • Yong Pang
  • Zhibing Hu
  • John Paul Kaisam

Abstract

Appropriate water body diversion can improve the water quality of Tai Lake. Excessive diversion of water would, however, dramatically alter the local flow fields, which are not conducive to the growth of aquatic plants and the stability of ecosystems. The current “Diverting Water from the Yangtze River to Tai Lake (DWYRTL)” project uses a single water source, the Wangyu River, for diversion, a model that may significantly affect the nearby flow rate or uniformity of the lake and is not conducive to the long-term stability of the aquatic ecosystem in the Tai Lake district of the eastern part of the lake. In order to simulate the different situations of single- and dual-source water diversions (Wangyu-Xinmeng Rivers) in Tai Lake, we based this study on a three-dimensional hydrodynamic model coupled with the Euler method, which can accurately calculate the water exchange rates in the different districts of Tai Lake. The results show that (1) it is recommended that the total annual diversion of water should not exceed 20 × 10 8 m 3 ; (2) the wind field is the most important factor determining the distribution of spatial water exchange; (3) under wind-free conditions, the flow rate of a single-source diversion of water is approximately 50% higher than that of dual-source diversion; and (4) water diversion under the prevailing conditions of the northwest wind in winter will reduce the semiexchange period of the eastern part of the lake area from 50 to 30 days, significantly changing the nearby district’s uniformity, leading to ecological risks. Therefore, it is recommended that the dual-source water diversion mode be used in winter and windless season, and single-source water diversion mode be used in other seasons.

Suggested Citation

  • Ruichen Xu & Yong Pang & Zhibing Hu & John Paul Kaisam, 2020. "Dual-Source Optimization of the “Diverting Water from the Yangtze River to Tai Lake (DWYRTL)” Project Based on the Euler Method," Complexity, Hindawi, vol. 2020, pages 1-12, August.
  • Handle: RePEc:hin:complx:3256596
    DOI: 10.1155/2020/3256596
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/3256596.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/3256596.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/3256596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruichen Xu & Yong Pang & Zhibing Hu & Xiaoyan Hu, 2022. "The Spatiotemporal Characteristics of Water Quality and Main Controlling Factors of Algal Blooms in Tai Lake, China," Sustainability, MDPI, vol. 14(9), pages 1-17, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3256596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.