Author
Listed:
- Jianping Gou
- Junyu Lu
- Heping Song
- Hongxing Ma
- Weihua Ou
- Jia Ke
Abstract
Recently, collaborative representation-based classification (CRC) and its many variations have been widely applied for various classification tasks in pattern recognition. To further enhance the pattern discrimination of CRC, in this article we propose a novel extension of CRC, entitled discriminative, competitive, and collaborative representation-based classification (DCCRC). In the proposed DCCRC, the class discrimination information is fully utilized for promoting the true class of each testing sample to dominantly represent the testing sample during collaborative representation. The class discrimination information is well considered in the newly designed discriminative - norm regularization that can decrease the ability of representation from the interclasses of each testing sample. Simultaneously, a competitive - norm regularization is introduced to the DCCRC model with the class discrimination information with the aim of enhancing the competitive ability of representation from the true class of each testing sample. The effectiveness of the proposed DCCRC is explored by extensive experiments on the several public face databases and some real numerical UCI data sets. The experimental results demonstrate that the proposed DCCRC achieves the superior performance over the state-of-the-art representation-based classification methods.
Suggested Citation
Jianping Gou & Junyu Lu & Heping Song & Hongxing Ma & Weihua Ou & Jia Ke, 2019.
"Discriminative, Competitive, and Collaborative Representation-Based Classification with - Norm Regularizations,"
Complexity, Hindawi, vol. 2019, pages 1-14, December.
Handle:
RePEc:hin:complx:3251026
DOI: 10.1155/2019/3251026
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3251026. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.