Author
Listed:
- Pisut Pongchairerks
- Jenq-Haur Wang
Abstract
This paper introduces a job-shop scheduling problem (JSP) with bidirectional circular precedence constraints, called BCJSP. In the problem, each job can be started from any operation and continued by its remaining operations in a circular precedence-relation chain via either a clockwise or counterclockwise direction. To solve BCJSP, this paper proposes a multilevel metaheuristic consisting of top-, middle-, and bottom-level algorithms. The top- and middle-level algorithms are population-based metaheuristics, while the bottom-level algorithm is a local search algorithm. The top-level algorithm basically controls a start operation and an operation-precedence-relation direction of each job, so that BCJSP becomes a JSP instance that is a subproblem of BCJSP. Moreover, the top-level algorithm can also be used to control input parameters of the middle-level algorithm, as an optional extra function. The middle-level algorithm controls input parameters of the bottom-level algorithm, and the bottom-level algorithm then solves the BCJSP’s subproblem. The middle-level algorithm evolves the bottom-level algorithm’s parameter values by using feedback from the bottom-level algorithm. Likewise, the top-level algorithm evolves the start operations, the operation-precedence-relation directions, and the middle-level algorithm’s parameter values by using feedback from the middle-level algorithm. Performance of two variants of the multilevel metaheuristic (i.e., with and without the mentioned extra function) was evaluated on BCJSP instances modified from well-known JSP instances. The variant with the extra function performs significantly better in number than the other. The existing JSP-solving algorithms can also solve BCJSP; however, their results on BCJSP are clearly worse than those of the two variants of the multilevel metaheuristic.
Suggested Citation
Pisut Pongchairerks & Jenq-Haur Wang, 2021.
"A Job-Shop Scheduling Problem with Bidirectional Circular Precedence Constraints,"
Complexity, Hindawi, vol. 2021, pages 1-19, November.
Handle:
RePEc:hin:complx:3237342
DOI: 10.1155/2021/3237342
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:3237342. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.