IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2953241.html
   My bibliography  Save this article

Power Prediction-Based Model Predictive Control for Energy Management in Land and Air Vehicle with Turboshaft Engine

Author

Listed:
  • Zhengchao Wei
  • Yue Ma
  • Changle Xiang
  • Dabo Liu
  • Weixiang Zhou

Abstract

In recent years, the green aviation technology draws more attention, and more hybrid power units have been applied to the aerial vehicles. To achieve the high performance and long lifetime of components during varied working conditions, the effective regulation of the energy management is necessary for the vehicles with hybrid power unit (HPU). In this paper, power prediction-based model predictive control (P2MPC) for energy management strategy (EMS) is proposed for the vehicle equipped with HPU based on turboshaft engine in order to maintain proper battery’s state of charge (SOC) and decrease turboshaft engine’s exhaust gas temperature (EGT). First, a modeling approach based on data-driven method is adopted to obtain the mathematical model of turboshaft engine considering time delay and inertial of states. An integrated power predictor consisting of the classification of input status and the subpredictors are developed based on the deep learning method to improve the accuracy of the prediction model of the model predictive control (MPC). Subsequently, an EMS based on MPC using the proposed power predictor is introduced to regulate the SOC of battery and the EGT of turboshaft engine. The comparison with experimental results shows the high accuracy of mathematical model of turboshaft engine. The simulation results show the effectiveness of the proposed EMS for the vehicle, and the effects of different weight coefficients of objective function on the proposed EMS are discussed.

Suggested Citation

  • Zhengchao Wei & Yue Ma & Changle Xiang & Dabo Liu & Weixiang Zhou, 2021. "Power Prediction-Based Model Predictive Control for Energy Management in Land and Air Vehicle with Turboshaft Engine," Complexity, Hindawi, vol. 2021, pages 1-24, August.
  • Handle: RePEc:hin:complx:2953241
    DOI: 10.1155/2021/2953241
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/2953241.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/2953241.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/2953241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    2. Wei, Zhengchao & Ma, Yue & Yang, Ningkang & Ruan, Shumin & Xiang, Changle, 2023. "Reinforcement learning based power management integrating economic rotational speed of turboshaft engine and safety constraints of battery for hybrid electric power system," Energy, Elsevier, vol. 263(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2953241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.