IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2836064.html
   My bibliography  Save this article

Deep Learning Algorithms and Multicriteria Decision-Making Used in Big Data: A Systematic Literature Review

Author

Listed:
  • Mei Yang
  • Shah Nazir
  • Qingshan Xu
  • Shaukat Ali

Abstract

The data are ever increasing with the increase in population, communication of different devices in networks, Internet of Things, sensors, actuators, and so on. This increase goes into different shapes such as volume, velocity, variety, veracity, and value extracting meaningful information and insights, all are challenging tasks and burning issues. Decision-making based on multicriteria is one of the most critical issues solving ways to select the most suitable decision among a number of alternatives. Deep learning algorithms and multicriteria-based decision-making have effective applications in big data. Derivations are made based on the use of deep algorithms and multicriteria. Due to its effectiveness and potentiality, it is exploited in several domains such as computer science and information technology, agriculture, and business sector. The aim of the proposed study is to present a systematic literature study in order to show the applications of deep learning algorithms and multicriteria decision approaches for the problems of big data. The research finds novel means to make the decision support system for the problems of big data using multiple criteria in integration with machine learning and artificial intelligence approaches.

Suggested Citation

  • Mei Yang & Shah Nazir & Qingshan Xu & Shaukat Ali, 2020. "Deep Learning Algorithms and Multicriteria Decision-Making Used in Big Data: A Systematic Literature Review," Complexity, Hindawi, vol. 2020, pages 1-18, August.
  • Handle: RePEc:hin:complx:2836064
    DOI: 10.1155/2020/2836064
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/2836064.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/2836064.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/2836064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    2. Chi-Yo Huang & Chia-Lee Yang & Yi-Hao Hsiao, 2021. "A Novel Framework for Mining Social Media Data Based on Text Mining, Topic Modeling, Random Forest, and DANP Methods," Mathematics, MDPI, vol. 9(17), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2836064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.