Author
Listed:
- Jupeng Xie
- Huajun Zhang
- Linfan Liu
- Mengchuan Li
- Yixin Su
- Nishant Malik
Abstract
Sea wind speed forecast is important for meteorological navigation system to keep ships in safe areas. The high volatility and uncertainty of wind make it difficult to accurately forecast multistep wind speed. This paper proposes a new decomposition-based model to forecast hourly sea wind speeds. Because mode mixing affects the accuracy of the empirical mode decomposition- (EMD-) based models, this model uses the variational mode decomposition (VMD) to alleviate this problem. To improve the accuracy of predicting subseries with high nonlinearity, this model uses stacked gate recurrent units (GRU) networks. To alleviate the degradation effect of stacked GRU, this model modifies them by adding residual connections to the deep layers. This model decomposes the nonlinear wind speed data into four subseries with different frequencies adaptively. Each stacked GRU predictor has four layers and the residual connections are added to the last two layers. The predictors have 24 inputs and 3 outputs, and the forecast is an ensemble of five predictors’ outputs. The proposed model can predict wind speed in the next 3 hours according to the past 24 hours’ wind speed data. The experiment results on three different sea areas show that the performance of this model surpasses those of a state-of-the-art model, several benchmarks, and decomposition-based models.
Suggested Citation
Jupeng Xie & Huajun Zhang & Linfan Liu & Mengchuan Li & Yixin Su & Nishant Malik, 2021.
"Decomposition-Based Multistep Sea Wind Speed Forecasting Using Stacked Gated Recurrent Unit Improved by Residual Connections,"
Complexity, Hindawi, vol. 2021, pages 1-14, November.
Handle:
RePEc:hin:complx:2727218
DOI: 10.1155/2021/2727218
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2727218. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.