IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2671539.html
   My bibliography  Save this article

Positive Solutions for a System of Fractional Integral Boundary Value Problems Involving Hadamard-Type Fractional Derivatives

Author

Listed:
  • Haiyan Zhang
  • Yaohong Li
  • Jiafa Xu

Abstract

In this paper, we use fixed-point index to study the existence of positive solutions for a system of Hadamard fractional integral boundary value problems involving nonnegative nonlinearities. By virtue of integral-type Jensen inequalities, some appropriate concave and convex functions are used to depict the coupling behaviors for our nonlinearities .

Suggested Citation

  • Haiyan Zhang & Yaohong Li & Jiafa Xu, 2019. "Positive Solutions for a System of Fractional Integral Boundary Value Problems Involving Hadamard-Type Fractional Derivatives," Complexity, Hindawi, vol. 2019, pages 1-11, October.
  • Handle: RePEc:hin:complx:2671539
    DOI: 10.1155/2019/2671539
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/2671539.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/2671539.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/2671539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuman Meng & Yujun Cui, 2019. "Multiplicity Results to a Conformable Fractional Differential Equations Involving Integral Boundary Condition," Complexity, Hindawi, vol. 2019, pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaohong Li & Jie Liu & Donal O’Regan & Jiafa Xu, 2020. "Nontrivial Solutions for a System of Fractional q -Difference Equations Involving q -Integral Boundary Conditions," Mathematics, MDPI, vol. 8(5), pages 1-13, May.
    2. Jiafa Xu & Jiqiang Jiang & Donal O’Regan, 2020. "Positive Solutions for a Class of p -Laplacian Hadamard Fractional-Order Three-Point Boundary Value Problems," Mathematics, MDPI, vol. 8(3), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2671539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.