Author
Listed:
- Lin Bao
- Xiaoyan Sun
- Yang Chen
- Guangyi Man
- Hui Shao
Abstract
A novel algorithm, called restricted Boltzmann machine-assisted estimation of distribution algorithm, is proposed for solving computationally expensive optimization problems with discrete variables. First, the individuals are evaluated using expensive fitness functions of the complex problems, and some dominant solutions are selected to construct the surrogate model. The restricted Boltzmann machine (RBM) is built and trained with the dominant solutions to implicitly extract the distributed representative information of the decision variables in the promising subset. The visible layer’s probability of the RBM is designed as the sampling probability model of the estimation of distribution algorithm (EDA) and is updated dynamically along with the update of the dominant subsets. Second, according to the energy function of the RBM, a fitness surrogate is developed to approximate the expensive individual fitness evaluations and participates in the evolutionary process to reduce the computational cost. Finally, model management is developed to train and update the RBM model with newly dominant solutions. A comparison of the proposed algorithm with several state-of-the-art surrogate-assisted evolutionary algorithms demonstrates that the proposed algorithm effectively and efficiently solves complex optimization problems with smaller computational cost.
Suggested Citation
Lin Bao & Xiaoyan Sun & Yang Chen & Guangyi Man & Hui Shao, 2018.
"Restricted Boltzmann Machine-Assisted Estimation of Distribution Algorithm for Complex Problems,"
Complexity, Hindawi, vol. 2018, pages 1-13, November.
Handle:
RePEc:hin:complx:2609014
DOI: 10.1155/2018/2609014
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2609014. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.