IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2468431.html
   My bibliography  Save this article

Insulator Semantic Segmentation in Aerial Images Based on Multiscale Feature Fusion

Author

Listed:
  • Zheng Cui
  • Chunxi Yang
  • Sen Wang
  • Chun Wei

Abstract

As one of the important components in the transmission line, the insulator is related to the safe and reliable operation of the entire transmission line. Aerial images are characterized by complex backgrounds, multiple pseudotargets, and low signal-to-noise ratios. Rapid and accurate localization of insulators in aerial images is a critical and challenging task in automatic inspection of transmission lines. Most insulator localization methods suffer from the loss of target edge detail information and large amount of model parameters. To solve these problems, this paper adopts an Encoder-Decoder architecture, called ED-Net, to realize end-to-end intelligent and accurate identification of insulators in aerial images. Firstly, Initial Module and CA-Bottleneck which are used to extract features from images to generate finer feature maps are proposed in the Encoder path. Meanwhile, global average pooling is used to preserve the maximum receptive field. Secondly, in the Decoder path, Refinement Boundary Module and Asymmetric Convolution Module are given to perform boundary optimization on the feature map, which are generated by the Encoder path. Finally, the Attention Feature Fusion Module is introduced into the Decoder path to combine high-level features with low-level features better and reduce the gap between features of different levels. The proposed model architecture keeps a suitable balance between the model parameters and insulator segmentation performance on insulator test datasets. Specifically, for a 512 × 512 input image, 95.12% mean intersection over union is achieved on the insulator test datasets with different environments and model parameters size being only 13.61 M. Compared with the current state-of-the-art semantic segmentation methods, the results show that the proposed method has higher efficient and accuracy.

Suggested Citation

  • Zheng Cui & Chunxi Yang & Sen Wang & Chun Wei, 2022. "Insulator Semantic Segmentation in Aerial Images Based on Multiscale Feature Fusion," Complexity, Hindawi, vol. 2022, pages 1-14, July.
  • Handle: RePEc:hin:complx:2468431
    DOI: 10.1155/2022/2468431
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2022/2468431.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2022/2468431.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/2468431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2468431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.