IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2428710.html
   My bibliography  Save this article

A Sparse Underdetermined Blind Source Separation Method and Its Application in Fault Diagnosis of Rotating Machinery

Author

Listed:
  • HongChao Wang
  • WenLiao Du

Abstract

Rolling element bearing is one of the most commonly used supporting parts in rotating machinery, and it is also one of the most easily failing rotating parts. It is of great safety and economic significance to study the effective fault diagnosis method of rolling element bearing. The fault characteristic signal of rolling bearing is often affected by other interference signals in practical engineering, and the situation is much more serious when the rolling bearing fault occurs in gearbox. Besides, only a limited number of measuring points are used in the process of rolling bearing fault signal acquisition due to the limitation of sensors installation condition. In some sense, the above two factors often cause the result that the fault diagnosis of rolling bearing is the problem of underdetermined blind source separation. The independence and non-Gaussian characteristic of the observed signals are the prerequisite of most of existent blind source separation methods. Unlike traditional blind source separation methods, SCA originating from sparse representation is an effective method to solve the problem of underdetermined blind source separation, because it does not require the independence or non-Gaussian characteristics of the observed signals, and it only makes full use of the sparse characteristics of the observed signals to extract the source signal from the observed signals. Based on these, a sparse component analysis (SCA) method based on linear clustering (LC) named LC-SCA is proposed for the purpose of underdetermined blind source separation of vibration signals of rolling element bearing, and the LC is introduced into SCA to improve the computation efficiency of SCA. The effectiveness of the proposed method is verified by simulation and experiment. In addition, the superiority of the method is verified by comparison with the other related methods such as constrained independent component analysis (cICA) and SCA.

Suggested Citation

  • HongChao Wang & WenLiao Du, 2020. "A Sparse Underdetermined Blind Source Separation Method and Its Application in Fault Diagnosis of Rotating Machinery," Complexity, Hindawi, vol. 2020, pages 1-17, July.
  • Handle: RePEc:hin:complx:2428710
    DOI: 10.1155/2020/2428710
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/2428710.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/2428710.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/2428710?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2428710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.