IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2110154.html
   My bibliography  Save this article

Optimization of Clinical Nursing Management System Based on Data Mining

Author

Listed:
  • Yongxia Chen
  • Zhihan Lv

Abstract

The clinical nursing work based on the establishment and improvement of the clinical nursing system breaks through the traditional nursing work model, which has achieved the advantages of full traceability, practical operation, comprehensive analysis, and individual error correction of nursing work, and greatly improves the nursing quality and work efficiency of nurses. With the advent of the era of big data, how to organically combine data mining technology with nursing information to optimize the nursing information system, apply big data to clinical nursing work through nursing information system, and provide patients with more efficient, high-quality, and safe nursing services is a problem that needs urgent consideration in today’s era. Therefore, this research is based on the framework of the hospital’s existing clinical care system, using data mining technology to improve the Bayesian algorithm and data preprocessing, optimizes the design of functional modules in the clinical nursing management system, and optimizes the patient information management, medical order management, medical order execution management, basic information and expense management, nursing execution process management, system and data management, barcode management, physical sign management, WAP information management, and other subsystems in the clinical nursing information management system. Experiments have proved that the use of a data mining-based clinical care management system can simplify user operations and improve users’ application of software. The application system of nursing methods based on data mining technology more completely integrates nursing information management business, makes nursing information management initially “digital,†and can improve the quality of hospital care to a large extent.

Suggested Citation

  • Yongxia Chen & Zhihan Lv, 2021. "Optimization of Clinical Nursing Management System Based on Data Mining," Complexity, Hindawi, vol. 2021, pages 1-11, June.
  • Handle: RePEc:hin:complx:2110154
    DOI: 10.1155/2021/2110154
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/2110154.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/2110154.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/2110154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2110154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.