Author
Listed:
- Meng Cai
- Han Luo
- Ying Cui
- Atila Bueno
Abstract
With the development of the Internet, social media has become an important platform for people to deal with emergencies and share information. When a public health emergency occurs, the public can understand the topics of the event and perceive the sentiments of others through social media, thus building a cooperative communication network. In this study, we took the public health emergency as the main research object and the natural disaster, accident, and social security event as the secondary research object and further revealed the law of the formation and evolution of public opinion through the analysis on temporal networks of topics and sentiments in social media platforms. Firstly, we identified the derived topics by constructing the topic model and used the sentiment classification model to divide the text sentiments of the derived topics into two types: positive sentiment and negative sentiment. Then, the ARIMA time series model was used to fit and predict the evolution and diffusion rules of topics and sentiments derived from public opinions on temporal networks. It was found that the evolution law of derived public opinions had similarities and differences in various types of emergencies and was closely related to government measures and media reports. The related research provides a foundation for the management of network public opinion and the realization of better emergency effects.
Suggested Citation
Meng Cai & Han Luo & Ying Cui & Atila Bueno, 2021.
"A Study on the Topic-Sentiment Evolution and Diffusion in Time Series of Public Opinion Derived from Emergencies,"
Complexity, Hindawi, vol. 2021, pages 1-23, December.
Handle:
RePEc:hin:complx:2069010
DOI: 10.1155/2021/2069010
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2069010. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.