IDEAS home Printed from https://ideas.repec.org/a/hin/complx/1976499.html
   My bibliography  Save this article

Radio Frequency Link and User Selection Algorithm for 5G Mobile Communication System

Author

Listed:
  • Zhengnan Lv
  • Zhenghao Xi
  • Zhihan Lv

Abstract

Based on the millimetre-wave time-domain channel detector, this paper conducts channel measurement and modelling for different scenarios and antenna types in typical frequency bands and thus carries out a study on the propagation characteristics of millimetre-wave channels in typical frequency bands and scenarios for 5G. The time-varying characteristics and modelling methods of millimetre-wave clusters are studied, and the time-varying channel simulation strategy and linear regression fitting method are used to establish the time-varying generation and extinction model of clusters by combining the measured data of 26 GHz large-scale antenna channels. The algorithm is based on the correlation dictionary and achieves the efficient and optimal selection of large-scale antenna arrays in the millimetre-wave band. A low-complexity multiuser hybrid precoding design scheme is proposed based on the wideband millimetre-wave large-scale Multiple-Input Multiple-Output (MIMO) system. The scheme aims to maximize the system spectral efficiency and introduces the net spectral efficiency as a bridge to decouple the analogy precoding design from the digital precoding design, thus significantly reducing the computational complexity. In the analogy precoding stage, a Hungarian algorithm-based beam assignment method is proposed to avoid beam conflicts and maximize the net spectral efficiency of the system; in the digital precoding stage, the equivalent channel matrix of each subcarrier is diagonalized to eliminate multiuser interference. Finally, the effectiveness of the scheme is verified by simulation. In this paper, we focus on the radio frequency (RF) link and user selection algorithm of 5G mobile communication system. Through the study of these two aspects, the RF link of our communication system has high stability and reliability, and through the study of the algorithm used for selection, our results also have a strong practical value.

Suggested Citation

  • Zhengnan Lv & Zhenghao Xi & Zhihan Lv, 2021. "Radio Frequency Link and User Selection Algorithm for 5G Mobile Communication System," Complexity, Hindawi, vol. 2021, pages 1-10, June.
  • Handle: RePEc:hin:complx:1976499
    DOI: 10.1155/2021/1976499
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/complexity/2021/1976499.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/complexity/2021/1976499.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/1976499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1976499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.