Author
Listed:
- Yu Jiang
- Hang Yu
- Jun Jiang
- Zhihan Lv
Abstract
Schizophrenia is a serious mental disease whose pathogenesis has not been fully elucidated. Its clinical evaluation and diagnosis still highly depend on the clinical experience of doctors. It is of great scientific value and clinical significance to study the inducing factors and neuropathological mechanism of schizophrenia. Based on the four research problems of schizophrenia, this paper analyzes the data types that need to be stored in clinical trials and scientific research, including basic information, case report data, neuropsychological and cognitive function evaluation, magnetic resonance data, electroencephalogram (EEG) data, and intestinal flora data. Through the demand analysis of the system, including the data management part, data analysis part, the functional demand of the system management part, and the overall nonfunctional demand of the system, the overall architecture design, functional module division, and database table structure design of the system are completed. Adopting Browser/Server (B/S) architecture and front-end and back-end separation mode and applying Java and Python programming language, based on spring framework and database, a multidimensional information management system for schizophrenia is designed and implemented, which includes four modules: data analysis, data management, system management, and security control. In addition, each functional module of the system is designed and implemented in detail, and the software operation flow of each module is illustrated with the sequence diagram. Finally, the multidimensional data of schizophrenia collected in our laboratory were used for system test to verify whether the system can meet the needs of clinical big data management of schizophrenia and the multidimensional information management system of schizophrenia can meet the needs of clinical big data management. The information management system helps schizophrenic researchers to carry out data management and data analysis. It also has advantages that are easy to use, safe, and efficient and has strong scalability in data management, data analysis, and scalability. It reflects the innovation of the system and provides a good platform for the management, research, and analysis of clinical big data of schizophrenia.
Suggested Citation
Yu Jiang & Hang Yu & Jun Jiang & Zhihan Lv, 2021.
"Optimization of Multidimensional Clinical Information System for Schizophrenia,"
Complexity, Hindawi, vol. 2021, pages 1-10, May.
Handle:
RePEc:hin:complx:1744155
DOI: 10.1155/2021/1744155
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:1744155. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.